
J .  Fluid Mech. (1979), vol. 93, part 3, pp. 401412 

Printed in &eat Britain 
40 1 
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The dispersion relations for infinitesimal internal gravity waves ( A )  and axisymmetric 
waves in swirling streams (B)  are considered. I n  both cases the mainstream may be 
sheared and density stratified in the transverse (vertical in case A ,  radial in case B )  
direction. The following results are proved for either case: If the maximum speed 
W,,, (or minimum speed Wmrn) (in a meridian plane in case B )  of the mainstream 
occurs a t  an interior point in the fluid, then the phase speed of any mode takes all 
values from the W,,, (or Wmin) to +00 ( -  00) as the overall Richardson number A2 
varies from 0 to 00. If W,,, (Wmin) is attained a t  a boundary point with finite rate of 
strain, there is a positive non-zero critical Richardson number below which one or 
both branches of the dispersion relation terminate. These results employ variational 
methods and correct erroneous results concerning problem B stated in Chandrasekhar’s 
treatise on hydrodynamic stability. Furthermore, bounds are given on the group 
velocity for both branches of the dispersion relation. From these bounds it is shown 
that in the absence of reversals of the mainstream (Wmin > 0) upstream propagation 
of wave energy is impossible whenever upstream propagation of constant phase 
surfaces is impossible. 

1. Introduction 
Qualitative features of the dispersion relation for waves in inviscid density-statified 

streaming fluids are considered. The mathematical (and physical) similarities of wave 
propagation in density-stratified fluids under gravity (case A ,  internal gravity waves) 
on sheared currents and on streaming vortices (case B, where centrifugal force replaces 
gravity as the restoring force) are relatively well known. I n  the present paper we 
encompass both systems and also allow density stratification (in the radial direction) 
in the case of swirling flows. Sketches of the problems to be considered are shown in 
figure 1. 

The waves we are interested in are those corresponding to the real discrete spectrum 
of the normal modes of the system; it is this part of the spectrum that contributes 
neutrally stable propagating wave modes. The phase speeds for these waves are either 
larger than the maximum flow speed, or smaller than the minimum flow speed. When 
the local Richardson number (defined in 5 2) exceeds 4 everywhere, than these flows 
are stable to infinitesimal disturbances$ (Miles 1961; Howard & Gupta 1962; Leibovich 

t This paper is dedicated to the memory of my friend Stephen A. Thau, whose unexpected 

$ Maslowe (1977) shows the possibility of subcriticd instability to sufficiently large distur- 
death was a sad and irreplaceable loss to the mechanics community. 

bances when the local Richardson number exceeds &. 
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FIGURE 1. Illustrations of the two classes of problems considered. ( A )  Internal gravity waves in 
a fluid confined between parallel planes a t  y = yr and y = yz. ( B )  Swirling flow in a tube; the 
fluid may be density straified, and confined in an annulus between radii y1 2 0 and ya > yl. 

1969), and the only infinitesimal disturbance components are these waves. If the 
local Richardson number is less than &, stability cannot be guaranteed and the flow 
may become unstable. Whether or not instability actually occurs, propagating neutral 
modes may still be possible, as shown by Banks, Drazin & Zaturska (1976) for special 
cases involving internal gravity waves on sheared currents. 

A disturbance streamfunction can be defined for propagating neutral modes, and 
assumes the form 

where c is the phase speed, and Ic the wavenumber. If the local Richardson number is 
@(y), then a device often used is to introduce an ‘overall Richardson number’ (denoted 
by h2 herein) and to write @(y) = h2$(y) .  Thus $(y) is a normalized function describing 
the shape of @(y), and the parameter h2 sets the scale of @. For a given shape $(y), 
the dispersion relation may then be written as 9 ( c ,  k, h2) = 0. For fixed values of k 
and h2, more than one value of c may satisfy the dispersion relation. If admissible 
values are labelled c,, n = 1, 2, ... each eigenvalue c ,  corresponds to an eigenfunction 
fGfn(y) which describes the vertical structure of that wave mode. The purpose of this 
paper is to study the characteristics of these waves for both physical systems A and 
B as a function of overall Richardson number for arbitrary current speeds [denoted 
by W(y)], arbitrary statically stable density (denoted by p,(y) and p;t < 0) and, in case 
B, arbitrary azimuthal speeds [denoted by V(y)]. 

Banks et al. (1976) have covered much of the ground of this paper for problem A 

= I&/) exp { W Z  - ct)l}, 
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(neglecting the inertial effects of density stratification, a step that is unnecessary with 
present treatment). By constructing detailed numerical and analytical solutions for 
special cases (ph/po = constant, and various mainstream profiles W(y)), they found 
the following. 

(i) If the maximum W,, (or minimum Wmtn) of W(y) occurs in the interior of the 
fluid, then an infinite number of propagating neutral modes exist for all positive values 
of h2, and the phase speed c 4 W,,, ( c  t TVmin) as h2 -+ 0. 

(ii) h2 -+ hi =+ 0 as c approaches an exteme value of the flow speed (i.e. either W,,, 
or Wmin) that is attained a t  a boundary of the flow. 

Chandrasekhar (1960)) using two variational principles, claimed to have demon- 
strated (i) for case B (with p, = constant) without regard to the position of the extremum 
in W. In  fact, Chandrasekhar argues from his analysis that the shear W'(y) does not 
play a role in determining stability of these flows, and that stability is assured 
if Rayleigh's criterion that the square of the circulation (y2V2, if y is the radius) 
increases outwards is satisfied. Howard & Gupta (1962), without identifying the flaw 
in the argument, point out that this conclusion must be incorrect. Here we use varia- 
tional principles also and, correcting and extending Chandrasekhar's work, rigorously 
prove (i) and (ii) for general density and velocity profiles for both cases A and B. 

Bell (1974)t has studied the behaviour of the dispersion relation for internal gravity 
waves with shear, for given @(y), as a function of n (k fixed) and as a function of k 
(n fixed). Using Sturmian methods, he shows that (a)  if @(y) > a for all y of interest, 
a denumerably infinite set of normal modes exist for each fixed k corresponding to 
eigenvalues c which have a finite maximum (minimum) and converge to W,,, (Wmin) 
as n increases indefinitely, and ( b )  for fixed n, Ic( is a decreasing function of k, which 
tends to k-Wrnax + W,,, ( k - 1 ~ ~ ~ ~  + 1 Wminl) as k increases indefinitely. The results of 
the present paper therefore complement Bell's work. 

We also consider the group velocity of the propagating neutral modes. Benjamin 
(1962) demonstrated (for case B with po = constant) that the group velocity of standing 
waves (where the smallest possible phase speed c = 0) is positive (i.e. in the downstream 
direction). Thus no disturbance source in a swirling stream can produce a stationary 
wave pattern upstream of the source, and Benjamin thereby ruled out Squire's (1960) 
explanation of vortex breakdown (but see Leibovich 1978 for discussion of this point). 
Benjamin's own theory of vortex breakdown centres around a classification of vortex 
flows as subcritical (where the minimum phase speed is negative, i.e. constant phase 
surfaces can propagate upstream) or supercritical (where only downstream propagation 
of constant phase surfaces is possible). While this classification based upon phase 
speeds is adequate for Benjamin's theory (which contemplates phenomena that are 
stationary in time) it does leave open the question of whether (non-stationary) 
upstream propagation of wave packets is possible under the conditions defined as 
supercritical. I n  $ 4  we establish bounds on the group velocity that, among other 
things, answers this question in the negative, provided the axial velocity W(y) exhibits 
no reversals of direction. I n  particular, we show for cases A and B that, for any given 
mode, the group velocity for the lower branch ( c  < Wmin) of dispersion relation is in 
half-open interval [c,  Wm,,), while the group velocity for the upper branch (C > "ma,) 

is in the half-open interval (Wmin, c ] .  

t I am indebted to a referee for bringing Bell's work to my attention. 
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2. Governing equations 
We consider the wave propagation characteristics of incompressible, inviscid, den- 

sity-stratified flows. The fluid may be in motion parallel to an axis; or may be in 
motion having symmetry, and an azimuthal velocity component, about the axis. 

In  both cases, the distinguished axis is taken to be the z-axis. In  the parallel flow 
case (which will be denoted ‘A’), we adopt a Cartesian (z, y, x )  co-ordinate system and 
assume the undisturbed velocity vector is of the form 

4 = P , O ,  W Y ) ) ,  
where the y co-ordinate decreases in the direction of the gravitational acceleration. In  
the axisymmetric case (case ‘B’),  we use a cylindrical (y, 8, z )  co-ordinate system, in 
which the radial distance from the symmetry axis is y, and assume the undisturbed 
fluid velocity vector is 

and gravity is ignored. In  both cases, the undisturbed fluid density is 

P = Po(Y) 
and we assume that the undisturbed flow (i.e., po, W ,  and V )  depends smoothly upon y. 

If attention is restricted in case A to two-dimensional perturbations,? independent 
ofx, and in case B to axisymmetric perturbations, then a streamfunction @ is available. 
For both cases, normal modes can be investigated by writing the perturbation stream- 

where v = 0 for case A and v = 1 for case B, and the function ~ ( y )  satisfies the equation 
(cf. Miles (1961) for case A,  and Leibovich (1969) for case B) 

D[PO(Y) ( ~ - C ) 2 D * X 1 - P o ~ 2 ( W - - C ) 2 X + P O Q , X  = 0, (1)  

where D = d/dy, D, = D +  v/y 

and 
- qp;l Dpo for case A ,  

~-~ppO’ D(po y2 V2) for case B, 

g is the gravitational acceleration, and Q, will be assumed positive everywhere in the 
flow. (The definition of Q, for case B in Leibovich (1969) is po times the definition used 
here.) We will assume the fluid to be confined by walls at y = y1 and y = y2 > yl, so 

X(Y1) = X(Y2) = 0. (2) 

In  case B, the walls at fixed y confine the fluid to a cylindrical annulus, but the 
inner wall may be absent (i.e. y1 = 0). 

The problem posed in (1) and (2) for case B has been considered by Chandrasekhar 
(1961) and by Howard & Gupta (1962) in the important special case of constant 
density. The extension of Howard & Gupta’s main results to the present case B is 
straightforward, and has been carried out by Leibovich (1969). In  particular, it can 

t This entails no loss of generality. The normal mode problem for a wave propagating in the 
r, z plane with wavenumber vector k = k (sin 8, COB 8 )  is reduced, by a co-ordinate rotation, to 
a two-dimensional problem in the plane determined by the y axis and k; the reduced problem 
is identical to (1) with W(y) replaced by W(y) cos 8. 
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be shown that stability to infinitesimal disturbances is assured if the Richardson 
number 

everywhere in (yl, y 2 ) ,  and the identical result is shown by Miles (1961) for case A .  
We will consider all possible flows with J > 0, including those that may prove unstable, 
but we restrict attention to that part of the spectrum (e.g. set of c for k fixed) that 
corresponds to propagating neutral modes (defined in the next section). 

Let the maximum value of W in [ y l ,  y2] be denoted W,,,, and the minimum value 

J(y) = CD/(DW)2 2 & (3) 

v m i n  < W ( y )  < Wmax Wmin, 80 

in [Y1, Y2l. 

3. Qualitative features of the spectrum of propagating neutral modes 
Propagating neutral modes (neutrally stable modes not adjacent to unstable modes), 

when they occur, have c real and either c > W,,,, or c < Wmin, so that the governing 
differential equation (1) is non-singular. When the flow is stable no other modes are 
possible; this is assured when the stability criterion (3) is satisfied, but may be true for 
smaller Richardson numbers also. Even when the flow is unstable, propagating neutral 
modes may still exist, as described by Banks et al. (1976) for the plane parallel stratified 
flow case. 

The spectrum of problem (1) is usually discussed as a function, first of all, of wave- 
number k for fixed @. We refer to this as the primary eigenvalue problem. On the 
other hand, the behaviour for k fixed and c prescribed, and variable CD has been an 
alternative approach. Here one assumes 

@‘(Y) = A 2 4 ( Y ) ,  
where $(y) prescribes the functional form of CD. Here A2 is a positive normalizing 
parameter (an ‘overall Richardson number’) that is sought as the eigenvalue when 
c and k are fixed. We refer to this as the secondary eigenvalue problem. 

Chandrasekhar (1961, pp. 368-9) describes a variational principle for the phase 
speed c for case B (with po = constant, but the arguments are not changed in case B 
if po is variable, nor would they change for case A ) .  This principle is associated with 
the primary eigenvalue problem. As Chandrasekhar points out, for real phase speeds 
c, the variational principle is valid only for propagating neutral modes. For the 
propagating neutral modes to which it applies, the variational principle appears to 
show that there are two and only two real values of c for fixed A2; one is greater than 
W& and the other smaller than Wmin. The validity of this variational principle, and 
the conclusions that have been drawn from it, will be discussed later. 

From the secondary eigenvalue problem, which is in standard Sturm-Liouville 
form, one can deduce that an infinite number of real, positive h2 exist for each value 
of c > Wmax, and for each value of c < Wmin by employing Sturmian theory. Each of 
these eigenvalues, which may be ordered, i.e. AT < Af < . . . , corresponds to a distinct 
mode of oscillation: the eigenfunctions xl, x2,  . . . corresponding to each mode can be 
identified by the number of zeros attained in the interior of the interval, with the nth 
eigenfunction displaying n-  1 internal zeros. Thus one can trace the continuous 
variation of the nth eigenvalue h2 = h2,(c) as c varies continuously, since it always 
corresponds to that eigenfunction with n - 1 internal zeros. 
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If k is held fixed and equation (1) is differentiated with respect to h2, we find that 
the function 

satisfies an inhomogeneous differential equation with the same operator as (1) .  
Since x(y; ha) satisfies the homogeneous problem, a solution for f is possible only if the 
orthogonality condition 

f (y; h2) E ax&; h 2 ) p  

2h2(dc/dh2) = - / I p o (  W - ~ ) ~ Q y ~ d y / / ~ * p ~ (  Yl W - c )  Qyvdy (4) 

where Q = (D,X)2+k2X2 ( 5 )  

is satisfied (here we have used the differential equation to make the replacement 
h21po &y2y”dy = ( W - c)2po Qyvdy). From (4) we conclude (Chandrasekhar gives a 
different and more involved proof) that c decreases with increasing h2 for all c < Wmin 

(we call this the lower branch; c is regarded here as a function of h2 for k fixed) and 
c increases with increasing h2 for c > Wmax (the upper branch). This shows, by the 
inverse function theorem, that the function h2, (c )  determined from Sturm-Liouville 
theory to be the nth eigenvalue, can be inverted to give two distinct branches for the 
function c,(h2), with the upper branch (the superscript (u)) having c‘,“‘ > Wmax and 
the lower branch (denoted by the superscript (I)) having c:) < Wmin. Note that c?) or 
c;’ corresponds to the nth mode of propagation. 

It is well known that the functional 

achieves a minimum for solutions of the secondary eigenvalue problem. It is easy to 
see from this variational principle that for any given mode h2 = O( IcI2) asymptotically 
as lc12 +- 00. 

Chandrasekhar asserts that the variational principal (6) implies that h2 -+ 0 as 
c 3. Wmax, or as c + Wmin, which would imply that all physically possible values of h2 
correspond to values of c outside the range of W .  The assertion that h2 +- 0 as c -+ Wmax 

or c --f Wmin is neither obvious from the inspection of the variational principle, nor, 
as detailed calculations by Banks et al. (1976) for special cases suggest, is it  always 
true. In  that class of flows for which the claim is true, one would be tempted to follow 
Chandrasekhar’s reasoning and conclude that such flows are stable provided @ is 
positive. For each positive @, two real c exist outside the range of W and, by the first 
variational principle, only two values of c outside the range of W are possible. It thus 
appears that all possibilities are exhausted, and all possible solutions are propagating 
neutral modes. 

This conclusion, however, is known to be incorrect. One fallacy (another is suggested 
at the end of this section) in the reasoning seems to be this: in the variational principle 
for A2 one must prescribe values of c,  and the variational principle is meaningless when 
the c prescribed is complex. Thus, although a given value of h2 may be associated with 
two real c describing propagating neutral modes, complex values of c are not excluded 
for sufficiently small h2. 

(a) If an extreme value of W = Wextreme occurs at an interior point, then h2(c) -+ 0 
as c -+ Wextreme. We now return to the claim that h2 + 0 as c J. Wmax or as c f Wmin. 



Wave propagation in density-strati$ed JEows with shear 407 

Chandrasekhar does not provide a proof of this: in fact, it  is only obvious for W(y) 
= constant. If the overall maximum speed Wmex (or minimum speed Wmin) occurs 
at an interior point of the flow, it can be proved quite generally? that h2 -+ 0 as 
c 4 Wmax (or c f Wmin). Consider the function 

where yo is a point in the interior of (yo, yl) where W achieves either its maximum or 
minimum. To be definite, we assume the extreme value is a minimum: an essentially 
identical analysis holds if a maximum is considered. Then, if yo is an interior point, 

W = W m i n + K 2 ( y - y o ) 2 + O ( y - y o ) 3  
near y = yo, where K 2  = a2 W/ay21Y--y,. If we define the parameter E in (7) to be 

then W - c = E + K2(y - yo)2 + O(y - y0)3 near y = yo. Consider the functional (6) for 
h2. As B -+ 0, the numerator of (6) is O(eO), but the denominator is 

e Wmin-C 

as e -+ 0. Since h2 is the minimum over all admissible (twice differentiable functions 
~ ( y )  satisfying the boundary conditions) the present demonstration shows that 
c + Wmin implies h2 + 0. In  fact, the present estimate suggests that c = Wmin + O(h2) 
as h2 3 0, in agreement with Banks et al. (1976, where the notation is h2 = J ) .  

We have thus shown that the lowest eigenvalue h;(c) -+ 0 as B -+ 0 for all flows in 
which the extreme values of W(y) are confined to the interior of the flow domain. Recall 
that an infinite number of modes exist for regular Sturm-Liouville problems such 
as this, with eigenvalues that can be ordered hq(c) < hg(c) c ... hi(c) < ... . We can 
now show that, for any fixed mode n and wavenumber k, A ~ , ( c )  -+ 0 as c f Wmin 

(C 4 W,,,) if Wmin (Wmax) occurs at  an interior point. The analysis is carried out only 
for h;(c), but the generalization to higher modes is clear. 

Suppose the lowest eigenfunction corresponding to h:(c) is denoted x1 and is known. 
Then the eigenvalue ha(c) is the minimum of the functional (6) over all admissible 
functions x orthogonal to xl, i.e. with inner product 

(X,Xl) = y'Po$(Y)Y'XXldY Yl = 0 

(Courant & Hilbert, 1953, p. 401). With the previous definitions of E and g E  retained, 
construct the function gi2) depending upon a parameter b,  

9(E2) = (y - b )  9c"Y - Yo)2 + 4 - 4  
and choose b so that ( gL2), xl) = 0. Thus 

t Banks et al. (1976) obtain the result for case A by heuristic, but convincing, methods. 
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as e + 0. When gL2) is substituted into the functional (6), one again finds the numerator 
to be O(co) and the denominator is 

SO that h%(c) + 0 also as e -+ 0 (i.e. as c -+ Wmln). Functions g',") may be constructed by 
including n- 1 adjustable constants to enable one to render 9:") orthogonal to the 
first n - 1 eigenfunctions (by a suitable generalization of the idea above): in this way 
one can show that hz(c) + 0 as E -+ 0. 

(b) When an extreme value W = Wextreme occurs a t  a boundary point h2(c) $. 0 as c -+ 

Wextreme. It is not true that h:(c) -+ 0 as c t Wmin or c 4 W,,, if the extreme valueof W in 
question occurs a t  a boundary point: this has been shown in special cases by a com- 
bination of numerical methods and matched asymptotic expansions by Banks et al. 
(1976). A neater (and rigorous) demonstration employing the variational principle (6) 
(and not invoking an asymptotic matching principle) is the following, which builds 
upon a specific example kindly supplied by Professor L. E. Payne. 

We consider only case B :  case A is easier to deal with, and a parallel discussion is 
readily constructed. Consider first the special case W(y) = By+d ,  and assume that 
the maximum value of po 4 in [yl, y2] is M. It will be shown that A2(c) i+ 0 as c J. Wmax 
(here Wm,, = By2+d). The denominator of (6) is 

where integration by parts and the Xchwartz inequality have been used. Thus 

and therefore 

J "1 

If the minimum value of p,(y) = a + 0, then, for this special linear profile, 

Hence 
a(c - 

P ( C )  2 ~ 

4MY22 
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and, since we consider the limit c J. Wmax = By,  + d ,  ( C  - d)/y ,  = B, 

Although this construction is for a specific W ( y ) ,  it can easily be generalized to  any 
W ( y )  achieving an overall maximum at y = y, (and at no other position, excluding 
flows with Wmax obtaining at more than one point) with W'(y,) + 0. One need only 
observe that it is possible t o  choose constants B and d such that By, + d = W(y2) and 
c - W ( y )  c - d -  B y  for all yl < y < y,, so that  (12)-(14) still follows since 

IPo(W- C I 2 & Y  dY 2 jP@Y + d - C),&Y dy. 

The generalized proof above is easily seen to  apply also to  the cases where c f Wmin, 
where the overall minimum Wmin occurs a t  y = y,; and by the corresponding limits 
c f Wmjn, c 4 Wmax where the minimum or maximum of W occurs a t  y = y,, provided 
t,hat W' + 0 at these boundary points. 

The results of this section would seem to call into question the conclusion drawn by 
Chandrasekhar (1961) from his variational principle for c :  namely, for any given 
value of @ for which a solution to eigenvalue problem ( 1 )  (for eigenvalue c )  exists with 
c outside the range of W ,  then exactly two real eigenvalues exist. For, with given 
functional form &y) ,  Chandrasekhar's conclusion implies that  the limit for A2(c)  
in (6) as c 4 W,,, is the same as the limit c t Wmin. But the present results show that 
the infimum of A2 on the lower branch need not be the same as on the upper branch. 
For example, if one extreme point W = W, is an interior point, as in subsection (a) ,  
and the other extreme point W = W, occurs a t  a boundary and satisfies the conditions 
of subsection ( b ) ,  A2 + 0 as c + W,, while A 2  $r 0 as c --f W,. Thus, it' seems possible that 
there may be a range of A2 which is associated with only one value of c outside the 
range of W ,  as indicated in figure 2. 

4. Group velocity 
In  this section, we establish bounds on the group velocity of propagating neutral 

modes. 
Consider the primary eigenvalue problem for fixed @ (i.e. A2 fixed) and fixed k. 

According to  the last section, there may be zero, one or two real valuesof c outside the 
range of W .  If real eigenvalues corresponding to a given mode exist, they will vary 
continuously with the parameter k (holding A2 fixed). The function c,(k) generated 
in this way for the nth propagation mode, will be designated as the upper branch 
(for the nth mode) if c > Wmax, and will be designated the lower branch if c < Wmin. 
When it is necessary to do so, we distinguish the branches by superscripts (u) and ( I )  as 
before. 

For any mode (the subscript n will be omitted in the remainder of this section 
with the understanding that reference is made to a single mode), the group velocity 
is defined to be 

d dc 
c,(k) = - (kc) = c(k) + k- dk dk'. 
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FIGURE 2. Illustrating the results of $3 .  Two modes are shown for the lower branch for the cme 
in which the minimum flow speed W,,, occurs in the interior of the fluid; in this case the lower 
branch for each mode terminates at A2 = O +  . Two modes of the upper branch are also shown 
for the case in which the overall maximum flow speed occurs at a boundary; in such cases the 
branch must terminate at a nonzero value of h2. Note that for the case shown here there is a 
range of h2 with only one branch of the function c(h2). 

and we wish to determine how the group velocity corresponding to a given branch of 
the dispersion relation is related to the phase speed on that branch. To this end we 
again use the method that produced (5); differentiate (1)  with respect to k and let 

The function F satisfies homogeneous boundary conditions, and an inhomogeneous 
differential equation with the same operator as (1) .  Since x(y; k) satisfies the homo- 
geneous problem, a solution for F(y ;  k) is possible only if the following orthogonality 
condition is satisfied: 

where Q is defined in (5 ) .  If (16) is multiplied by k and rearranged, the result 

may be found. 
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FIGURE 3. Sketch showing the range of possible values of the group velocity c,(k) for 
the two branches of the dispersion relation. 

By hypothesis, for all admissible values of c, W-c is either strictly positive or 
strictly negative, depending upon the branch selected for c(k). We therefore may infer 
from (17) that: 

(i) the sign of k dcldk is the same as the sign of W - C, thus 
cp’ >, C O  

and c y  < c(u). 

(ii) kdc/dk-+Oask+O, hencec,-+c+Oif W-c> Oandc,-+c-Oif W-c  < 0 
in the limit k -+ 0. That cg -+ c in the long wave limit is well known. 

We observe that, for W(y) > 0, the group velocity for standing waves (C = 0) 
corresponds to W - c > 0, hence cg >, c. This result is proved by Benjamin (1962), 
and is the basis for his criticism of Squire’s (1960) vortex breakdown criterion. 

k2x2 < Q 
we may infer from (17) that 

Since 

k @/W j: p0yy (  W - c) Qdy < I”* yup0( W - c ) ~ Q  
U1 

or 

On the lower branch W - c@ > 0 throughout, and 

from which one may conclude that 

By a similar argument, one may conclude that 

on the upper branch. We may now summarize (see figure 3 also): 

cb“ < w,,,. 

c y  > Wmin 

c@ 6 C b  < Wmax; (a) for the lower branch, 
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(b)  for the upper branch, 

In supercritical flow, both branches have c > 0, so that upstream propagation of 
constant phase surfaces is impossible. The present results show that upstream propaga- 
tion of wave packets is also prohibited in this case so that in supercritical flow dis- 
turbance energy may propagate only in the downstream direction. 

Wmin < cp’ 6 c@). 
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